1. (6 points) Find the prime factorization of $2 \in \mathbb{Z}[i]$. Hint: We have $\mathrm{N}(1+i)=2$.

Solution: $(1+i)(1-i)=2$ in $\mathbb{Z}[i]$ (1 pt). $\mathbb{Z}[i]$ is euclidean $(2 \mathrm{pt}) .1 \pm i$ is irreducible (1 pt) since $1 \pm i=\alpha \beta \Longrightarrow 2=N(\alpha) N(\beta) \Longrightarrow$ w.l.o.g. $\alpha \in \mathbb{Z}[i]^{*}(2 \mathrm{pt})$.
2. (8 points) Show that $R:=\mathbb{Z}[\sqrt{-17}]$ is not an euclidean ring.

Solution: $2 \in R$ is irreducible since $\forall \alpha \in R: N(\alpha) \neq 2(4 \mathrm{pt}) .9 \cdot 2=18=(1+\sqrt{-17})(1-$ $\sqrt{-17})(2 \mathrm{pt})$ and $2 \nmid(1 \pm \sqrt{-17})(2 \mathrm{pt})$.
3. (10 points) Find the minimal polynomial of $\alpha=\sqrt{-3}+\sqrt{2}$ over \mathbb{Q}. What is $[\mathbb{Q}(\alpha): \mathbb{Q}]$?

Solution: $\alpha^{2}=2 \sqrt{-6}-1(1 \mathrm{pt}) \Longrightarrow \alpha^{4}+2 \alpha^{2}+25=0(1 \mathrm{pt}) .[\mathbb{Q}(\alpha): \mathbb{Q}]=4(2 \mathrm{pt})$. Since $t^{4}+2 t^{2}+25$ has degree 4 it has to be irreducible. (6 pt)
4. (10 points) Let $R:=\mathbb{Q}[t] /\left(t^{4}-1\right) \mathbb{Q}[t]$. How many roots has the polynomial $X^{2}-X \in R[X]$?

Solution: $t^{4}-1=(t+1)(t-1)\left(t^{2}+1\right)(2 \mathrm{pt}) \Longrightarrow R \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}(i)(4 \mathrm{pt})$. Since every factor on the righthandside is a field, we get for each factor exactly 2 roots of $X^{2}-X(2$ $\mathrm{pt})$. There are $2^{3}=8$ roots in $R(2 \mathrm{pt})$.
5. (a) (6 points) Let $\{0\} \neq R$ be a finite integral ring and $a \in R \backslash 0$. Show that the map

$$
\begin{array}{rlll}
{[a]:} & R & \longrightarrow & R \\
x & \longmapsto a x
\end{array}
$$

is a bijective homomorphism.
Solution: $[a]$ is a homomorphism $(2 \mathrm{pt}) . \operatorname{ker}([a])=\{0\}(2 \mathrm{pt})$ since R is integral. $[a]$ is injective (1 pt) $\Longrightarrow[a]$ is bijective since R is finite (1 pt).
(b) (9 points) Let $\{0\} \neq R$ be a commutative ring and let $P \subsetneq R$ be a prime ideal of R. Use Part a) to show:

$$
R / P \text { is finite } \Longrightarrow P \text { is a maximal ideal of } R
$$

Solution: $S:=R / P$ is integral (2 pt), finite $\Longrightarrow[a]: S \rightarrow S$ is bijective (2 pt) for $0 \neq a \in S \quad \Longrightarrow \quad \exists b \in S:[a](b)=a \cdot b=1_{S}(2 \mathrm{pt}) \quad \Longrightarrow a \in S^{*}(1 \mathrm{pt})$ $\Longrightarrow S$ is a field $(1 \mathrm{pt}) \Longrightarrow P$ is maximal (1 pt).
6. (10 points) Let $\{0\} \neq R$ be a commutative ring, $a \in R$ and $f \in R[t]$. Show:

$$
f R[t]+(t-a) R[t]=R[t] \Longleftrightarrow f(a) \in R^{*} .
$$

```
Solution: \(I:=f R[t]+(t-a) R[t]\)
\(" \Longrightarrow \quad ": I=R[t] \Longrightarrow 1 \in I(1 \mathrm{pt}) \Longrightarrow \exists g, h \mathbb{R}[t]: f g+(t-a) h=1(1 \mathrm{pt})\)
\(\Longrightarrow f(a) g(a)+(a-a) h=1(2 \mathrm{pt}) \Longrightarrow f(a) \in R^{*}(1 \mathrm{pt})\)
\(" \Leftarrow ":(t-a)\) is monic \(\Longrightarrow \exists q, r \in R[t]: f=(t-a) q+r\) and \(r=0\) or \(\operatorname{deg}(r)=0(2 \mathrm{pt})\)
\(\Longrightarrow f(a)=r \in I(2 \mathrm{pt}) \Longrightarrow I=R[t](1 \mathrm{pt})\).
```

7. (10 points) Let $\phi: R \rightarrow S$ be an isomorphism of rings and $a \in R$ an irreducible element. Show that $\phi(a) \in S$ is irreducible.

Solution: Assume $\phi(a)=\beta \cdot \gamma, \beta, \gamma \in S \backslash S^{*}(2 \mathrm{pt}) \Longrightarrow \exists b, c \in R: \beta=\phi(b), \gamma=\phi(c)(\phi$ is surjective) $(2 \mathrm{pt}) \Longrightarrow \phi(a)=\phi(b c) \Longrightarrow a=b c\left(\phi\right.$ is injective) $(2 \mathrm{pt})$. Since $\phi\left(R^{*}\right) \subset S^{*}$ $(4 \mathrm{pt})$, this is a contradiction.
8. (8 points) Construct a field with 27 elements.

Solution: $f:=t^{3}-t+1 \in \mathbb{F}_{3}[t]$ is irreducible $(2 \mathrm{pt}) \Longrightarrow L:=\mathbb{F}_{3}[t] /(f)$ is a field with $\left[L: \mathbb{F}_{3}\right]=3(4 \mathrm{pt}) \Longrightarrow \# L=3^{3}=27(2 \mathrm{pt})$.
9. (10 points) Let K be a field and $A, B \in K$. Show that $f:=X^{3}+A X+B \in K[X]$ is separable if and only if $4 A^{3}+27 B^{2} \neq 0$. Hint: Use the equality

$$
(-9 A X+27 B) \cdot f+\left(3 X^{2}+A\right) \cdot\left(3 A X^{2}-9 B X+4 A^{2}\right)=4 A^{3}+27 B^{2} .
$$

Solution: $f^{\prime}=\left(3 X^{2}+A\right)(2 \mathrm{pt}) . f$ is separable iff $\operatorname{gcd}\left(f, f^{\prime}\right)=1(2 \mathrm{pt})$. Let α be a root of f. Evaluating at α gives $\left(3 \alpha^{2}+A\right) \cdot\left(3 A \alpha^{2}-9 B \alpha+4 A^{2}\right)=4 A^{3}+27 B^{2}(2 \mathrm{pt})$. $4 A^{3}+27 B^{2} \neq 0 \Longrightarrow f^{\prime}(\alpha) \neq 0(2 \mathrm{pt})$ and $f^{\prime}(\alpha)=0$ implies $4 A^{3}+27 B^{2}=0(2 \mathrm{pt})$.
10. Let $f:=t^{6}-t^{5}+t^{4}-2 t^{3}+2 t^{2}-2 t-1 \in \mathbb{Z}[t]$.
(a) (3 points) Find a prime factorization of $\bar{f} \in \mathbb{F}_{2}[t]$, where ${ }^{-}$is the reduction of the coefficients modulo 2. Hint: What are the irreducible polynomials of degree two in $\mathbb{F}_{2}[t]$?

Solution: $\bar{f}=(t+1)\left(t^{5}+t^{3}+t^{2}+t+1\right)(1 \mathrm{pt})$ and $\left(t^{5}+t^{3}+t^{2}+t+1\right)$ is irreducible since $\left(t^{2}+t+1\right) \nmid\left(t^{5}+t^{3}+t^{2}+t+1\right)(2 \mathrm{pt})$.
(b) (2 points) Has f a root in \mathbb{Z} ?

Solution: The only possible roots are $\pm 1(2 \mathrm{pt})$.
(c) (8 points) Use Parts a) and b) to conclude that f is irreducible in $\mathbb{Q}[t]$.

Solution: Assume $f=g h$ with $g, h \in \mathbb{Z}[t]$ monic (1 pt). Then $\bar{f}=\bar{g} \bar{h}=(t+1)\left(t^{5}+\right.$ $\left.t^{3}+t^{2}+t+1\right)$ with $\operatorname{deg}(\bar{g})=\operatorname{deg}(g), \operatorname{deg}(\bar{h})=\operatorname{deg}(h)(2 \mathrm{pt}) . \mathbb{F}_{2}[t]$ is a faktorial ring (1 pt), thus, w.l.o.g. $\left(t^{5}+t^{3}+t^{2}+t+1\right) \mid \bar{g}(1 \mathrm{pt}) \Longrightarrow 5 \leq \operatorname{deg}(\bar{g})=\operatorname{deg}(g)(1 \mathrm{pt})$ $\Longrightarrow f$ is irreducible (since f is primitive) or f has a root (this is impossible by Part b)) (1 pt). $f \in \mathbb{Q}[t]$ is irreducible (1 pt).

